Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 108
Filtrar
1.
Elife ; 122024 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-38466626

RESUMO

This study aimed to investigate the glycan structural changes that occur before histological degeneration in osteoarthritis (OA) and to determine the mechanism by which these glycan conformational changes affect cartilage degeneration. An OA model was established in rabbits using mannosidase injection, which reduced high-mannose type N-glycans and led to cartilage degeneration. Further analysis of glycome in human OA cartilage identified specific corefucosylated N-glycan expression patterns. Inhibition of N-glycan corefucosylation in mice resulted in unrecoverable cartilage degeneration, while cartilage-specific blocking of corefucosylation led to accelerated development of aging-associated and instability-induced OA models. We conclude that α1,6 fucosyltransferase is required postnatally to prevent preosteoarthritic deterioration of articular cartilage. These findings provide a novel definition of early OA and identify glyco-phenotypes of OA cartilage, which may distinguish individuals at higher risk of progression.


Assuntos
Cartilagem Articular , Osteoartrite , Resiliência Psicológica , Humanos , Coelhos , Animais , Camundongos , Cartilagem Articular/metabolismo , Osteoartrite/metabolismo , Envelhecimento , Polissacarídeos/metabolismo , Modelos Animais de Doenças
2.
Biochem Biophys Res Commun ; 703: 149610, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38359610

RESUMO

O-GlcNAc is a unique post-translational modification found in cytoplasmic, nuclear, and mitochondrial proteins. In a limited number of extracellular proteins, O-GlcNAc modifications occur through the action of EOGT, which specifically modifies subsets of epidermal growth factor-like (EGF) domain-containing proteins such as Notch receptors. The abnormalities due to EOGT mutations in mice and humans and the increased EOGT expression in several cancers signify the importance of EOGT pathophysiology and extracellular O-GlcNAc. Unlike intracellular O-GlcNAc monosaccharides, extracellular O-GlcNAc extends to form elongated glycan structures. However, the enzymes involved in the O-GlcNAc glycan extension have not yet been reported. In our study, we comprehensively screened potential galactosyltransferase and sialyltransferase genes related to the canonical O-GlcNAc glycan pathway and revealed the essential roles of B4GALT1 and ST3GAL4 in O-GlcNAc glycan elongation in human HEK293 cells. These findings were confirmed by sequential glycosylation of Drosophila EGF20 in vitro by EOGT, ß4GalT-1, and ST3Gal-IV. Thus, the findings from our study throw light on the specific glycosyltransferases that mediate O-GlcNAc glycan elongation in human HEK293 cells.


Assuntos
Acetilglucosamina , Receptores Notch , Humanos , Animais , Camundongos , Células HEK293 , Acetilglucosamina/metabolismo , Receptores Notch/metabolismo , Galactosiltransferases/genética , Glicosiltransferases , Drosophila/metabolismo , Sialiltransferases/genética , Polissacarídeos
3.
Cell Death Dis ; 15(1): 53, 2024 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-38225221

RESUMO

Chronic metabolic stress paradoxically elicits pro-tumorigenic signals that facilitate cancer stem cell (CSC) development. Therefore, elucidating the metabolic sensing and signaling mechanisms governing cancer cell stemness can provide insights into ameliorating cancer relapse and therapeutic resistance. Here, we provide convincing evidence that chronic metabolic stress triggered by hyaluronan production augments CSC-like traits and chemoresistance by partially impairing nucleotide sugar metabolism, dolichol lipid-linked oligosaccharide (LLO) biosynthesis and N-glycan assembly. Notably, preconditioning with either low-dose tunicamycin or 2-deoxy-D-glucose, which partially interferes with LLO biosynthesis, reproduced the promoting effects of hyaluronan production on CSCs. Multi-omics revealed characteristic changes in N-glycan profiles and Notch signaling activation in cancer cells exposed to mild glycometabolic stress. Restoration of N-glycan assembly with glucosamine and mannose supplementation and Notch signaling blockade attenuated CSC-like properties and further enhanced the therapeutic efficacy of cisplatin. Therefore, our findings uncover a novel mechanism by which tolerable glycometabolic stress boosts cancer cell resilience through altered N-glycosylation and Notch signaling activation.


Assuntos
Ácido Hialurônico , Resiliência Psicológica , Humanos , Glicosilação , Ácido Hialurônico/metabolismo , Recidiva Local de Neoplasia/metabolismo , Polissacarídeos/metabolismo , Suplementos Nutricionais , Células-Tronco Neoplásicas/metabolismo
4.
Mol Genet Metab Rep ; 37: 101016, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38053926

RESUMO

Rare diseases are estimated to affect 3.5%-5.9% of the population worldwide and are difficult to diagnose. Genome analysis is useful for diagnosis. However, since some variants, especially missense variants, are also difficult to interpret, tools to accurately predict the effect of missense variants are very important and needed. Here we developed a method, "VarMeter", to predict whether a missense variant is damaging based on Gibbs free energy and solvent-accessible surface area calculated from the AlphaFold 3D protein model. We applied this method to the whole-exome sequencing data of 900 individuals with rare or undiagnosed disease in our in-house database, and identified four who were hemizygous for missense variants of arylsulfatase L (ARSL; known as the genetic cause of chondrodysplasia punctata 1, CPDX1). Two individuals had a novel Ser89 to Asn (Ser89Asn) or Arg469 to Trp (Arg469Trp) substitution, respectively predicted as "damaging" or "benign"; the other two had an Arg111 to His (Arg111His) or Gly117 to Arg (Gly117Arg) substitution, respectively predicted as "damaging" or "possibly damaging" and previously reported in patients showing clinical manifestations of CDPX1. Expression and analysis of the missense variant proteins showed that the predicted pathogenic variants (Ser89Asn, Arg111His, and Gly117Arg) had complete loss of sulfatase activity and reduced protease resistance due to destabilization of protein structure, while the predicted benign variant (Arg469Trp) had activity and protease resistance comparable to those of wild-type ARSL. The individual with the novel pathogenic Ser89Asn variant exhibited characteristics of CDPX1, while the individual with the benign Arg469Trp variant exhibited no such characteristics. These findings demonstrate that VarMeter may be used to predict the deleteriousness of variants found in genome sequencing data and thereby support disease diagnosis.

5.
Sci Rep ; 13(1): 20826, 2023 11 27.
Artigo em Inglês | MEDLINE | ID: mdl-38012253

RESUMO

A physical trainer often physically guides a learner's limbs to teach an ideal movement, giving the learner proprioceptive information about the movement to be reproduced later. This instruction requires the learner to perceive kinesthetic information and store the instructed information temporarily. Therefore, (1) proprioceptive acuity to accurately perceive the taught kinesthetics and (2) short-term memory to store the perceived information are two critical functions for reproducing the taught movement. While the importance of proprioceptive acuity and short-term memory has been suggested for active motor learning, little is known about passive motor learning. Twenty-one healthy adults (mean age 25.6 years, range 19-38 years) participated in this study to investigate whether individual learning efficiency in passively guided learning is related to these two functions. Consequently, learning efficiency was significantly associated with short-term memory capacity. In particular, individuals who could recall older sensory stimuli showed better learning efficiency. However, no significant relationship was observed between learning efficiency and proprioceptive acuity. A causal graph model found a direct influence of memory on learning and an indirect effect of proprioceptive acuity on learning via memory. Our findings suggest the importance of a learner's short-term memory for effective passive motor learning.


Assuntos
Memória de Curto Prazo , Desempenho Psicomotor , Adulto , Humanos , Adulto Jovem , Propriocepção , Aprendizagem , Cinestesia
6.
Front Plant Sci ; 14: 1040118, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37810384

RESUMO

Potassium (K+) is an essential macronutrient for plant growth. The transcriptional regulation of K+ transporter genes is one of the key mechanisms by which plants respond to K+ deficiency. Among the HAK/KUP/KT transporter family, HAK5, a high-affinity K+ transporter, is essential for root K+ uptake under low external K+ conditions. HAK5 expression in the root is highly induced by low external K+ concentration. While the molecular mechanisms of HAK5 regulation have been extensively studied, it remains unclear how plants sense and coordinates K+ uptake and translocation in response to changing environmental conditions. Using skor mutants, which have a defect in root-to-shoot K+ translocation, we have been able to determine how the internal K+ status affects the expression of HAK5. In skor mutant roots, under K+ deficiency, HAK5 expression was lower than in wild-type although the K+ concentration in roots was not significantly different. These results reveal that HAK5 is not only regulated by external K+ conditions but it is also regulated by internal K+ levels, which is in agreement with recent findings. Additionally, HAK5 plays a major role in the uptake of Cs+ in roots. Therefore, studying Cs+ in roots and having more detailed information about its uptake and translocation in the plant would be valuable. Radioactive tracing experiments revealed not only a reduction in the uptake of 137Cs+ and 42K+in skor mutants compared to wild-type but also a different distribution of 137Cs+ and 42K+ in tissues. In order to gain insight into the translocation, accumulation, and repartitioning of both K+ and Cs+ in plants, long-term treatment and split root experiments were conducted with the stable isotopes 133Cs+ and 85Rb+. Finally, our findings show that the K+ distribution in plant tissues regulates root uptake of K+ and Cs+ similarly, depending on HAK5; however, the translocation and accumulation of the two elements are different.

7.
Front Hum Neurosci ; 17: 1197380, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37497041

RESUMO

This study introduces a body-weight-support (BWS) robot actuated by two pneumatic artificial muscles (PAMs). Conventional BWS devices typically use springs or a single actuator, whereas our robot has a split force-controlled BWS (SF-BWS), in which two force-controlled actuators independently support the left and right sides of the user's body. To reduce the experience of weight, vertical unweighting support forces are transferred directly to the user's left and right hips through a newly designed harness with an open space around the shoulder and upper chest area to allow freedom of movement. A motion capture evaluation with three healthy participants confirmed that the proposed harness does not impede upper-body motion during laterally identical force-controlled partial BWS walking, which is quantitatively similar to natural walking. To evaluate our SF-BWS robot, we performed a force-tracking and split-force control task using different simulated load weight setups (40, 50, and 60 kg masses). The split-force control task, providing independent force references to each PAM and conducted with a 60 kg mass and a test bench, demonstrates that our SF-BWS robot is capable of shifting human body weight in the mediolateral direction. The SF-BWS robot successfully controlled the two PAMs to generate the desired vertical support forces.

8.
J Biol Chem ; 299(8): 105051, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37451482

RESUMO

Sialylation is a terminal glycosylated modification of glycoproteins that regulates critical biological events such as cell adhesion and immune response. Our previous study showed that integrin α3ß1 plays a crucial role in regulating the sialylation of N-glycans. However, the underlying mechanism for the regulation remains unclear. This study investigated how sialylation is affected by focal adhesion kinase (FAK), which is a critical downstream signal molecule of integrin ß1. We established a stable FAK knockout (KO) cell line using the CRISPR/Cas9 system in HeLa cells. The results obtained from lectin blot, flow cytometric analysis, and MS showed that the sialylation levels were significantly decreased in the KO cells compared with that in wild-type (WT) cells. Moreover, phosphatidylinositol 4-phosphate (PI4P) expression levels were also reduced in the KO cells due to a decrease in the stability of phosphatidylinositol 4-kinase-IIα (PI4KIIα). Notably, the decreased levels of sialylation, PI4P, and the complex formation between GOLPH3 and ST3GAL4 or ST6GAL1, which are the main sialyltransferases for modification of N-glycans, were significantly restored by the re-expression of FAK. Furthermore, the decreased sialylation and phosphorylation of Akt and cell migration caused by FAK deficiency all were restored by overexpressing PI4KIIα, which suggests that PI4KIIα is one of the downstream molecules of FAK. These findings indicate that FAK regulates sialylation via the PI4P synthesis pathway and a novel mechanism is suggested for the integrin-FAK-PI4KIIα-GOLPH3-ST axis modulation of sialylation in N-glycans.


Assuntos
Quinase 1 de Adesão Focal , Polissacarídeos , Transdução de Sinais , Humanos , Quinase 1 de Adesão Focal/metabolismo , Células HeLa , Proteínas de Membrana/metabolismo , Fosforilação , Polissacarídeos/metabolismo
9.
J Plant Res ; 136(5): 705-714, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37233957

RESUMO

This research provides insight into a unique salt tolerance mechanism of Vigna riukiuensis. V. riukiuensis is one of the salt-tolerant species identified from the genus Vigna. We have previously reported that V. riukiuensis accumulates a higher amount of sodium in the leaves, whereas V. nakashimae, a close relative of V. riukiuensis, suppresses sodium allocation to the leaves. We first suspected that V. riukiuensis would have developed vacuoles for sodium sequestration, but there were no differences compared to a salt-sensitive species V. angularis. However, many starch granules were observed in the chloroplasts of V. riukiuensis. In addition, forced degradation of leaf starch by shading treatment resulted in no radio-Na (22Na) accumulation in the leaves. We performed SEM-EDX to locate Na in leaf sections and detected Na in chloroplasts of V. riukiuensis, especially around the starch granules but not in the middle of. Our results could provide the second evidence of the Na-trapping system by starch granules, following the case of common reed that accumulates starch granule at the shoot base for binding Na.


Assuntos
Vigna , Vigna/metabolismo , Sódio/metabolismo , Amido/metabolismo , Folhas de Planta/metabolismo , Cloroplastos/metabolismo
10.
Glycoconj J ; 40(2): 259-267, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36877384

RESUMO

Characterization of O-glycans linked to serine or threonine residues in glycoproteins has mostly been achieved using chemical reaction approaches because there are no known O-glycan-specific endoglycosidases. Most O-glycans are modified with sialic acid residues at the non-reducing termini through various linkages. In this study, we developed a novel approach for sialic acid linkage-specific O-linked glycan analysis through lactone-driven ester-to-amide derivatization combined with non-reductive ß-elimination in the presence of hydroxylamine. O-glycans released by non-reductive ß-elimination were efficiently purified using glycoblotting via chemoselective ligation between carbohydrates and a hydrazide-functionalized polymer, followed by modification of methyl or ethyl ester groups of sialic acid residues on solid-phase. In-solution lactone-driven ester-to-amide derivatization of ethyl-esterified O-glycans was performed, and the resulting sialylated glycan isomers were discriminated by mass spectrometry. In combination with PNGase F digestion, we carried out simultaneous, quantitative, and sialic acid linkage-specific N- and O-linked glycan analyses of a model glycoprotein and human cartilage tissue. This novel glycomic approach will facilitate detailed characterization of biologically relevant sialylated N- and O-glycans on glycoproteins.


Assuntos
Ésteres , Ácido N-Acetilneuramínico , Humanos , Ácido N-Acetilneuramínico/química , Glicoproteínas/química , Polissacarídeos/química , Lactonas
11.
Biochim Biophys Acta Gen Subj ; 1867(5): 130331, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36804277

RESUMO

This study determined the effect of brefeldin A (BFA) on the free N-glycomic profile of HepG2 cells to better understand the effect of blocking intracellular vesicle formation and transport of proteins from the endoplasmic reticulum to the Golgi apparatus. A series of exoglycosidase- and endoglycosidase-assisted analyses clarified the complex nature of altered glycomic profiles. A key feature of BFA-mediated alterations in Gn2-type glycans was the expression of unusual hybrid-, monoantennary- and complex-type free N-glycans (FNGs). BFA-mediated alterations in Gn1-type glycans were characterized by the expression of unusual hybrid- and monoantennary-FNGs, without significant expression of complex-type FNGs. A time course analysis revealed that sialylated hybrid- and complex-type Gn2-type FNGs were generated later than asialo-Gn2-type FNGs, and the expression profiles of Gn2-type FNGs and N-glycans were found to be similar, suggesting that the metabolic flux of FNGs is the same as that of protein-bound N-glycans. Subcellular glycomic analysis revealed that almost all FNGs were detected in the cytoplasmic extracts. Our data suggest that hybrid-, monoantennary- and complex-type Gn2-type FNGs were cleaved from glycoproteins in the cytosol by cytosolic PNGase, and subsequently digested by cytosolic endo-ß-N-acetylglucosaminidase (ENGase) to generate Gn1-type FNGs. The substrate specificity of ENGase explains the limited expression of complex Gn1 type FNGs.


Assuntos
Glicosídeo Hidrolases , Polissacarídeos , Humanos , Brefeldina A/farmacologia , Células Hep G2 , Polissacarídeos/metabolismo , Manosil-Glicoproteína Endo-beta-N-Acetilglucosaminidase
12.
Methods Mol Biol ; 2613: 289-299, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36587086

RESUMO

Glycosphingolipids (GSLs) are glycolipids with ceramide and carbohydrate head groups that play an important role in numerous biological processes. Previously, we performed GSL-glycan analysis of various cell lines and virus-infected cells using a glycoblotting approach. Recently, we developed several methods for sialic acid linkage-specific chemical modification to distinguish sialylated glycan isomers by mass spectrometry. In this chapter, we describe a method for analyzing GSL-glycans in human serum/plasma using glycoblotting combined with aminolysis-SALSA (sialic acid linkage-specific alkylamidation) and lactone-driven ester-to-amide derivatization (LEAD)-SALSA for comprehensive and detailed structural glycomics.


Assuntos
Ácido N-Acetilneuramínico , Esfingolipídeos , Humanos , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Glicoesfingolipídeos/metabolismo , Polissacarídeos/química
13.
J Chromatogr A ; 1689: 463748, 2023 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-36586283

RESUMO

Glycosaminoglycans (GAGs), which are one of the major components of proteoglycans, play a pivotal role in physiological processes such as signal transduction, cell adhesion, growth, and differentiation. Characterization of GAGs is challenging due to the tremendous structural diversity of heteropolysaccharides with numerous sulfate or carboxyl groups. In this present study, we examined the analysis of 2-aminobenzamide (2-AB) labeled GAG disaccharides by high-performance liquid chromatography (HPLC) using a reverse-phase (RP)-column with adamantyl groups. Under the analytical conditions, 17 types of 2-AB labeled GAG disaccharides derived from heparan sulfate, chondroitin/dermatan sulfates, and hyaluronan were sequentially separated in a single analysis. The analysis time was fast with high retention time reproducibility. Moreover, the RP-HPLC column with adamantyl groups allowed the quantification of GAGs in various biological samples, such as serum, cultured cells, and culture medium.


Assuntos
Sulfatos de Condroitina , Glicosaminoglicanos , Glicosaminoglicanos/química , Sulfatos de Condroitina/química , Ácido Hialurônico/análise , Ácido Hialurônico/química , Dermatan Sulfato/análise , Dermatan Sulfato/química , Dermatan Sulfato/metabolismo , Cromatografia Líquida de Alta Pressão/métodos , Dissacarídeos/química , Reprodutibilidade dos Testes , Heparitina Sulfato/análise
14.
Int J Mol Sci ; 23(21)2022 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-36361885

RESUMO

Glycans are involved in many fundamental cellular processes such as growth, differentiation, and morphogenesis. However, their broad structural diversity makes analysis difficult. Glycomics via mass spectrometry has focused on the composition of glycans, but informatics analysis has not kept pace with the development of instrumentation and measurement techniques. We developed Toolbox Accelerating Glycomics (TAG), in which glycans can be added manually to the glycan list that can be freely designed with labels and sialic acid modifications, and fast processing is possible. In the present work, we improved TAG for large-scale analysis such as cohort analysis of serum samples. The sialic acid linkage-specific alkylamidation (SALSA) method converts differences in linkages such as α2,3- and α2,6-linkages of sialic acids into differences in mass. Glycans modified by SALSA and several structures discovered in recent years were added to the glycan list. A routine to generate calibration curves has been implemented to explore quantitation. These improvements are based on redefinitions of residues and glycans in the TAG List to incorporate information on glycans that could not be attributed because it was not assumed in the previous version of TAG. These functions were verified through analysis of purchased sera and 74 spectra with linearity at the level of R2 > 0.8 with 81 estimated glycan structures obtained including some candidate of rare glycans such as those with the N,N'-diacetyllactosediamine structure, suggesting they can be applied to large-scale analyses.


Assuntos
Glicômica , Ácido N-Acetilneuramínico , Humanos , Glicômica/métodos , Polissacarídeos/química , Ácidos Siálicos/química , Espectrometria de Massas
15.
Regen Med ; 17(11): 793-803, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36154668

RESUMO

Aim: Tumorigenicity of residual undifferentiated induced pluripotent stem cells (iPSCs) is a major concern. The purpose of this study was to investigate the optimal conditions for removal of iPSCs using R-17F antibody, which recognizes specific glycosphingolipids glycans on undifferentiated iPSCs and exhibits selective cytotoxicity to iPSCs. Materials & methods: After adding of R-17F and secondary antibody to co-cultured iPSCs and chondrocytes, residual iPSCs were quantitatively evaluated by iPS specific glycome analysis. Results: Undifferentiated iPSCs were sufficiently removed using R-17F in combination with an equal amount of a secondary antibody. Furthermore, teratomas were not observed upon transplantation of co-cultured cells pretreated under the same conditions into testes of immunodeficient mice. Conclusion: This removal method incorporating R-17F may be useful for regenerative medicine using iPSCs.


Assuntos
Células-Tronco Pluripotentes Induzidas , Teratoma , Animais , Anticorpos , Diferenciação Celular , Condrócitos , Glicoesfingolipídeos , Camundongos
16.
Methods Mol Biol ; 2556: 1-18, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36175622

RESUMO

The glycocalyx is a layer of glycans that covers the surface of every cell. Glycans are covalently attached to proteins and lipids, and are classified into subclasses such as N-linked glycans, glycosaminoglycans, glycosphingolipid-glycans, free oligosaccharides, and O-linked glycans according to their biosynthetic pathways. These complex glycans affect various biological and pathological processes, such as cell growth, differentiation, and adhesion. During infection, bacteria and viruses often use glycans to recognize and attack host cells. In this chapter, we describe detailed protocols to prepare glycans, and perform comprehensive cellular glycomic analysis using glycoblotting and ß-elimination with pyrazolone methods.


Assuntos
Glicoesfingolipídeos , Pirazolonas , Diferenciação Celular , Glicoproteínas , Glicosaminoglicanos
17.
Sci Rep ; 12(1): 16058, 2022 09 26.
Artigo em Inglês | MEDLINE | ID: mdl-36163359

RESUMO

Podocytopathy, which is characterized by injury to podocytes, frequently causes proteinuria or nephrotic syndrome. There is currently a paucity of effective therapeutic drugs to treat proteinuric kidney disease. Recent research suggests the possibility that glycosphingolipid GM3 maintains podocyte function by acting on various molecules including nephrin, but its mechanism of action remains unknown. Here, various analyses were performed to examine the potential relationship between GM3 and nephrin, and the function of GM3 in podocytes using podocytopathy mice, GM3 synthase gene knockout mice, and nephrin injury cells. Reduced amounts of GM3 and nephrin were observed in podocytopathy mice. Intriguingly, this reduction of GM3 and nephrin, as well as albuminuria, were inhibited by administration of valproic acid. However, when the same experiment was performed using GM3 synthase gene knockout mice, valproic acid administration did not inhibit albuminuria. Equivalent results were obtained in model cells. These findings indicate that GM3 acts with nephrin in a collaborative manner in the cell membrane. Taken together, elevated levels of GM3 stabilize nephrin, which is a key molecule of the slit diaphragm, by enhancing the environment of the cell membrane and preventing albuminuria. This study provides novel insight into new drug discovery, which may offer a new therapy for kidney disease with albuminuria.


Assuntos
Albuminúria , Podócitos , Albuminúria/metabolismo , Animais , Glicoesfingolipídeos/metabolismo , Camundongos , Podócitos/metabolismo , Proteinúria/metabolismo , Ácido Valproico/metabolismo , Ácido Valproico/farmacologia
18.
Ann Bot ; 130(6): 799-810, 2022 12 16.
Artigo em Inglês | MEDLINE | ID: mdl-35948001

RESUMO

BACKGROUND AND AIMS: Zinc (Zn) is an essential element for humans and plants. However, Zn deficiency is widespread and 25 % of the world's population is at risk of Zn deficiency. To overcome the deficiency of Zn intake, crops with high Zn content are required. However, most crop-producing areas have Zn-deficient soils, therefore crops with excellent Zn uptake/transport characteristics (i.e. high Zn efficiency) are needed. Our objective was to identify the crucial factors responsible for high Zn efficiency in the legume Lotus japonicus. METHODS: We evaluated Zn efficiency by static and real-time visualization of radioactive Zn (65Zn) uptake/transport in two L. japonicus accessions, MG-20 and B-129, that differ in Zn efficiency. The combination of visualization methods verified the dynamics of Zn accumulation and transport within the plant. We compared gene expression under a normal Zn concentration (control) and Zn deficiency to evaluate genetic factors that may determine the differential Zn efficiency of the accessions. KEY RESULTS: The accession B-129 accumulated almost twice the amount of Zn as MG-20. In the static 65Zn images, 65Zn accumulated in meristematic tissues, such as root tips and the shoot apex, in both accessions. The positron-emitting tracer imaging system (PETIS), which follows the transport process in real time, revealed that 65Zn transport to the shoot was more rapid in B-129 than in MG-20. Many genes associated with Zn uptake and transport were more highly expressed in B-129 than in MG-20 under the control condition. These gene expression patterns under Zn deficiency differed from those under the control Zn condition. CONCLUSIONS: PETIS confirmed that the real-time transport of 65Zn to the shoot was faster in B-129 than in MG-20. The high Zn efficiency of B-129 may be due to the elevated expression of a suite of Zn uptake- and transport-related genes.


Assuntos
Lotus , Humanos , Lotus/genética , Lotus/metabolismo , Raízes de Plantas/metabolismo , Elétrons , Zinco/metabolismo , Expressão Gênica
19.
Biochim Biophys Acta Gen Subj ; 1866(9): 130168, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35594965

RESUMO

Swainsonine (SWA), a potent inhibitor of class II α-mannosidases, is present in a number of plant species worldwide and causes severe toxicosis in livestock grazing these plants. The mechanisms underlying SWA-induced animal poisoning are not fully understood. In this study, we analyzed the alterations that occur in N- and free N-glycomic upon addition of SWA to HepG2 cells to understand better SWA-induced glycomic alterations. After SWA addition, we observed the appearance of SWA-specific glycomic alterations, such as unique fucosylated hybrid-type and fucosylated M5 (M5F) N-glycans, and a remarkable increase in all classes of Gn1 FNGs. Further analysis of the context of these glycomic alterations showed that (fucosylated) hybrid type N-glycans were not the precursors of these Gn1 FNGs and vice versa. Time course analysis revealed the dynamic nature of glycomic alterations upon exposure of SWA and suggested that accumulation of free N-glycans occurred earlier than that of hybrid-type N-glycans. Hybrid-type N-glycans, of which most were uniquely core fucosylated, tended to increase slowly over time, as was observed for M5F N-glycans. Inhibition of swainsonine-induced unique fucosylation of hybrid N-glycans and M5 by coaddition of 2-fluorofucose caused significant increases in paucimannose- and fucosylated paucimannose-type N-glycans, as well as paucimannose-type free N-glycans. The results not only revealed the gross glycomic alterations in HepG2 cells induced by swainsonine, but also provide information on the global interrelationships between glycomic alterations.


Assuntos
Glicômica , Swainsonina , Animais , Glicosilação , Células Hep G2 , Humanos , Polissacarídeos , Swainsonina/toxicidade
20.
Methods Mol Biol ; 2490: 179-193, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35486246

RESUMO

Glycosylation is one of the most abundant posttranslational modifications and is involved in a wide range of cellular processes. Glycome diversity in mammals is generated by the action of over 200 distinct glycosyltransferases and related enzymes. Nevertheless, glycosylation dynamics are tightly coordinated to allow proper organismal development. Here, using mouse embryonic stem cells (mESCs) and mouse epiblast-like cells (mEpiLCs) as model systems, we describe a robust protocol that allows comprehensive and comparative structural analysis of the glycome.


Assuntos
Camadas Germinativas , Células-Tronco Pluripotentes , Animais , Linhagem Celular , Células-Tronco Embrionárias , Mamíferos , Camundongos , Células-Tronco Embrionárias Murinas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...